| | |
| | | import de.uhilger.zeitrechnung.Zeit; |
| | | |
| | | /** |
| | | * Abstrakte Basisklasse fuer Klassen, die ein Kalendersystem implementieren |
| | | * Abstrakte Basisklasse fuer Klassen, die ein Kalendersystem implementieren. |
| | | * |
| | | * Hier sind neben allerlei relevanten Rechenmethoden die grundlegenden |
| | | * astronomischen Algorithmen für die Zeit- und Kalenderrechnung implementiert. |
| | | * |
| | | * @author Ulrich Hilger |
| | | * @version 2, 1.10.2022 |
| | | */ |
| | | public abstract class BasisKalender implements Zeitrechnung { |
| | | |
| | |
| | | return nterTag(-1, t, datum); |
| | | } |
| | | |
| | | /* ----- */ |
| | | |
| | | public double moduloAngepasst(double x, double y) { |
| | | return y + modulo(x, -y); |
| | | } |
| | | |
| | | /* ---- Zeit ----- */ |
| | | |
| | | public double zuMoment(int stunde, int minute, double sekunde) { |
| | |
| | | return z; |
| | | } |
| | | |
| | | /* ----------- Mondphase ----------- */ |
| | | /* ----------- Mond ----------- */ |
| | | |
| | | /** durchschnittliche Dauer eines Mondphasenzyklus (synodischer Monat) in Tagen */ |
| | | public static final double MITTLERER_SYNODISCHER_MONAT = 29.530588853; |
| | | |
| | | public double mondphase(double t) { |
| | | return modulo(mondLaenge(t) - solareLaenge(t), 360); |
| | |
| | | public double mondHoehe(double t, Ort ort) { |
| | | double phi = ort.getBreite(); |
| | | double psi = ort.getLaenge(); |
| | | double varepsilon = obliquity(t); |
| | | double varepsilon = schiefstand(t); |
| | | double lambda = mondLaenge(t); |
| | | double beta = mondBreite(t); |
| | | double alpha = arcTanGrad( |
| | |
| | | private static final double[] siderealCoeff = new double[] {280.46061837, 36525 * 360.98564736629, 0.000387933, 1d/38710000}; |
| | | } |
| | | |
| | | public double neumondNach(double tee) { |
| | | return nterNeumond(1 + Math.round(tee / MITTLERER_SYNODISCHER_MONAT - mondphase(tee) / (double) (360))); |
| | | } |
| | | |
| | | public double neumondVor(double tee) { |
| | | return nterNeumond(Math.round(tee / MITTLERER_SYNODISCHER_MONAT - mondphase(tee) / (double) (360))); |
| | | } |
| | | |
| | | public double nterNeumond(long n) { |
| | | double k = n - 24724; |
| | | double c = k / 1236.85; |
| | | double approx = poly(c, nm.coeffApprox); |
| | | double capE = poly(c, nm.coeffCapE); |
| | | double solarAnomaly = poly(c, nm.coeffSolarAnomaly); |
| | | double lunarAnomaly = poly(c, nm.coeffLunarAnomaly); |
| | | double moonArgument = poly(c, nm.coeffMoonArgument); |
| | | double capOmega = poly(c, nm.coeffCapOmega); |
| | | double correction = -0.00017 * sinGrad(capOmega); |
| | | for(int ix = 0; ix < nm.sineCoeff.length; ++ix) { |
| | | correction += nm.sineCoeff[ix] * Math.pow(capE, nm.EFactor[ix]) * |
| | | sinGrad(nm.solarCoeff[ix] * solarAnomaly + |
| | | nm.lunarCoeff[ix] * lunarAnomaly + |
| | | nm.moonCoeff[ix] * moonArgument); |
| | | } |
| | | double additional = 0; |
| | | for(int ix = 0; ix < nm.addConst.length; ++ix) { |
| | | additional += nm.addFactor[ix] * |
| | | sinGrad(nm.addConst[ix] + nm.addCoeff[ix] * k); |
| | | } |
| | | double extra = 0.000325 * sinGrad(poly(c, nm.extra)); |
| | | return universalVonDynamisch(approx + correction + extra + additional); |
| | | } |
| | | private static class nm { |
| | | private static final double[] coeffApprox = new double[] {730125.59765, MITTLERER_SYNODISCHER_MONAT * 1236.85, 0.0001337, -0.000000150, 0.00000000073}; |
| | | private static final double[] coeffCapE = new double[] {1, -0.002516, -0.0000074}; |
| | | private static final double[] coeffSolarAnomaly = new double[] {2.5534, 29.10535669 * 1236.85, -0.0000218, -0.00000011}; |
| | | private static final double[] coeffLunarAnomaly = new double[] {201.5643, 385.81693528 * 1236.85, 0.0107438, 0.00001239, -0.000000058}; |
| | | private static final double[] coeffMoonArgument = new double[] {160.7108, 390.67050274 * 1236.85, -0.0016341, -0.00000227, 0.000000011}; |
| | | private static final double[] coeffCapOmega = new double[] {124.7746, -1.56375580 * 1236.85, 0.0020691, 0.00000215}; |
| | | private static final byte[] EFactor = new byte[] {0, 1, 0, 0, 1, 1, 2, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0}; |
| | | private static final byte[] solarCoeff = new byte[] {0, 1, 0, 0, -1, 1, 2, 0, 0, 1, 0, 1, 1, -1, 2, 0, 3, 1, 0, 1, -1, -1, 1, 0}; |
| | | private static final byte[] lunarCoeff = new byte[] {1, 0, 2, 0, 1, 1, 0, 1, 1, 2, 3, 0, 0, 2, 1, 2, 0, 1, 2, 1, 1, 1, 3, 4}; |
| | | private static final byte[] moonCoeff = new byte[] {0, 0, 0, 2, 0, 0, 0, -2, 2, 0, 0, 2, -2, 0, 0, -2, 0, -2, 2, 2, 2, -2, 0, 0}; |
| | | private static final double[] sineCoeff = new double[] { |
| | | -0.40720, 0.17241, 0.01608, 0.01039, 0.00739, -0.00514, 0.00208, |
| | | -0.00111, -0.00057, 0.00056, -0.00042, 0.00042, 0.00038, -0.00024, |
| | | -0.00007, 0.00004, 0.00004, 0.00003, 0.00003, -0.00003, 0.00003, |
| | | -0.00002, -0.00002, 0.00002 |
| | | }; |
| | | private static final double[] addConst = new double[] { |
| | | 251.88, 251.83, 349.42, 84.66, 141.74, 207.14, 154.84, 34.52, 207.19, |
| | | 291.34, 161.72, 239.56, 331.55 |
| | | }; |
| | | private static final double[] addCoeff = new double[] { |
| | | 0.016321, 26.641886, 36.412478, 18.206239, 53.303771, 2.453732, |
| | | 7.306860, 27.261239, 0.121824, 1.844379, 24.198154, 25.513099, 3.592518 |
| | | }; |
| | | private static final double[] addFactor = new double[] { |
| | | 0.000165, 0.000164, 0.000126, 0.000110, 0.000062, 0.000060, 0.000056, |
| | | 0.000047, 0.000042, 0.000040, 0.000037, 0.000035, 0.000023 |
| | | }; |
| | | private static final double[] extra = new double[] { |
| | | 299.77, 132.8475848, -0.009173 |
| | | }; |
| | | } |
| | | |
| | | public double universalVonDynamisch(double tee) { |
| | | return tee - ephemeridenKorrektur(tee); |
| | | } |
| | | |
| | | public double universalVonStandard(double teeS, Ort locale) { |
| | | return teeS - locale.getZeitzone() / 24; |
| | | } |
| | | |
| | | /* ----------- Sonnenauf- und -untergang ----------- */ |
| | | |
| | | public double sonnenaufgang(long date, Ort ort) throws Exception { |
| | |
| | | public double zeitVonHorizont(double approx, Ort ort, double alpha) throws Exception { |
| | | double phi = ort.getBreite(); |
| | | double t = universalVonLokal(approx, ort); |
| | | double delta = arcSinGrad(sinGrad(obliquity(t)) * sinGrad(solareLaenge(t))); |
| | | double delta = arcSinGrad(sinGrad(schiefstand(t)) * sinGrad(solareLaenge(t))); |
| | | boolean morgen = modulo(approx, 1) < 0.5; |
| | | double sinusAbstand = tanGrad(phi) * tanGrad(delta) + |
| | | sinGrad(alpha) / (kosGrad(delta) * kosGrad(phi)); |
| | |
| | | double laenge = poly(c, et.koeffLaenge); |
| | | double anomalie = poly(c, et.koeffAnomalie); |
| | | double exzentrizitaet = poly(c, et.koeffExzentrizitaet); |
| | | double varepsilon = obliquity(t); |
| | | double varepsilon = schiefstand(t); |
| | | double y = quadrat(tanGrad(varepsilon / 2)); |
| | | double equation = (1d / 2d / Math.PI) * (y * sinGrad(2 * laenge) + |
| | | -2 * exzentrizitaet * sinGrad(anomalie) + |
| | | 4 * exzentrizitaet * y * sinGrad(anomalie) * kosGrad(2 * laenge) + |
| | | -0.5 * y * y * sinGrad(4 * laenge) + |
| | | -1.25 * exzentrizitaet * exzentrizitaet * sinGrad(2 * anomalie)); |
| | | return signum(equation) * Math.min(Math.abs(equation), stunde(12)); |
| | | return vorzeichen(equation) * Math.min(Math.abs(equation), stunde(12)); |
| | | } |
| | | private static class et { |
| | | private static final double[] koeffLaenge = new double[] {280.46645, 36000.76983, 0.0003032}; |
| | |
| | | private static final double[] koeffExzentrizitaet = new double[] {0.016708617, -0.000042037, -0.0000001236}; |
| | | } |
| | | |
| | | public double obliquity(double t) { |
| | | public double schiefstand(double t) { |
| | | double c = julJahrhunderte(t); |
| | | return winkel(23, 26, 21.448) + poly(c, coeffObliquity); |
| | | } |
| | | private final double[] coeffObliquity = new double[] {0, winkel(0, 0, -46.8150), winkel(0, 0, -0.00059), winkel(0, 0, 0.001813)}; |
| | | |
| | | public int signum(double x) { |
| | | public int vorzeichen(double x) { |
| | | if(x < 0) |
| | | return -1; |
| | | else if(x > 0) |
| | |
| | | |
| | | /* ---------------- Jahreszeiten ----- */ |
| | | |
| | | public static final double TROPISCHES_JAHR = 365.242189; |
| | | /** durchschnittliche Dauer eines Umlaufs der Erde um die Sonne in Tagen */ |
| | | public static final double MITTLERES_TROPISCHES_JAHR = 365.242189; |
| | | |
| | | public double standardVonUniversal(double t, Ort ort) { |
| | | return t + ort.getZeitzone() / 24; |
| | |
| | | |
| | | public double solareLaengeNach(double t, double phi) { |
| | | double varepsilon = 0.00001; |
| | | double rate = TROPISCHES_JAHR / (double) 360; |
| | | double rate = MITTLERES_TROPISCHES_JAHR / (double) 360; |
| | | double tau = t + rate * modulo(phi - solareLaenge(t), 360); |
| | | double l = Math.max(t, tau - 5); |
| | | double u = tau + 5; |
| | |
| | | return modulo(laenge + aberration(t) + nutation(t), 360); |
| | | } |
| | | |
| | | public double geschaetzteSolareLaengeVor(double tee, double phi) { |
| | | double rate = MITTLERES_TROPISCHES_JAHR / (double) (360); |
| | | double tau = tee - rate * modulo(solareLaenge(tee) - phi, 360); |
| | | double capDelta = modulo(solareLaenge(tau) - phi + (double) (180), 360) - (double) (180); |
| | | return Math.min(tee, tau - rate * capDelta); |
| | | } |
| | | |
| | | public double julJahrhunderte(double t) { |
| | | return (dynamischVonUniversal(t) - j2000()) / 36525; |
| | | } |